This document is one of More SageMath Tutorials. You may edit it on github. \(\def\NN{\mathbb{N}}\) \(\def\ZZ{\mathbb{Z}}\) \(\def\QQ{\mathbb{Q}}\) \(\def\RR{\mathbb{R}}\) \(\def\CC{\mathbb{C}}\)

Linear Algebra

Vectors

To create a vector in Sage, use the vector command.

Note

vectors in Sage are row vectors!

Exercises

  1. Create the vector \(x = (1, 2, \ldots, 100)\).

    sage: # edit here
    
  2. Create the vector \(y = (1^2, 2^2, \ldots, 100^2)\).

    sage: # edit here
    
  3. Type x. and hit tab to see the available methods for vectors. Find the norm (length) of the vectors x and y.

    sage: # edit here
    
  4. Find the dot product of x and y .

    sage: # edit here
    

[The above exercises are essentially the first problem on Exercise Set 1 of William Stein’s Math 480b]

Matrices

  1. Use the matrix command to create the following matrix over the rational numbers (hint: in Sage, QQ denotes the field of rational numbers).

    \[\begin{split}\left(\begin{array}{rrrrrr}3 & 2 & 2 & 1 & 1 & 0 \\2 & 3 & 1 & 0 & 2 & 1 \\2 & 1 & 3 & 2 & 0 & 1 \\1 & 0 & 2 & 3 & 1 & 2 \\1 & 2 & 0 & 1 & 3 & 2 \\0 & 1 & 1 & 2 & 2 & 3\end{array}\right)\end{split}\]
    1. Find the echelon form of the above matrix.

      sage: # edit here
      
    2. Find the right kernel of the matrix.

      sage: # edit here
      
    3. Find the eigenvalues of the matrix.

      sage: # edit here
      
    4. Find the left eigenvectors of the matrix.

      sage: # edit here
      
    5. Find the right eigenspaces of the matrix.

      sage: # edit here
      
  2. For what values of \(k\) is the determinant of the following matrix \(0\)?

    \[\begin{split}\left(\begin{array}{rrr}1 & 1 & -1 \\2 & 3 & k \\1 & k & 3\end{array}\right)\end{split}\]
    sage: # edit here
    

    [K. R. Matthews, Elementary Linear Algebra , Chapter 4, Problem 8]

  3. Prove that the determinant of the following matrix is \(-8\).

    \[\begin{split}\left(\begin{array}{rrr}{n}^{2} & {\left( n + 1 \right)}^{2} & {\left( n + 2\right)}^{2} \\{\left( n + 1 \right)}^{2} & {\left( n + 2 \right)}^{2} &{\left( n + 3 \right)}^{2} \\{\left( n + 2 \right)}^{2} & {\left( n + 3 \right)}^{2} & {\left( n + 4 \right)}^{2}\end{array}\right)\end{split}\]
    sage: # edit here
    

    [K. R. Matthews, Elementary Linear Algebra , Chapter 4, Problem 3]

  4. Prove that if \(a \neq c\), then the line through the points \((a,b)\) and \((c,d)\) is given by the following equation.

    \[\begin{split}\det\left(\begin{array}{rrr}x & y & 1 \\a & b & 1 \\c & d & 1\end{array}\right) = 0.\end{split}\]
    sage: # edit here
    
  5. Find the determinant of the following matrices.

    \[\begin{split}\left(\begin{array}{r}1\end{array}\right),\left(\begin{array}{rr}1 & 1 \\r & 1\end{array}\right),\left(\begin{array}{rrr}1 & 1 & 1 \\r & 1 & 1 \\r & r & 1\end{array}\right),\left(\begin{array}{rrrr}1 & 1 & 1 & 1 \\r & 1 & 1 & 1 \\r & r & 1 & 1 \\r & r & r & 1\end{array}\right),\left(\begin{array}{rrrrr}1 & 1 & 1 & 1 & 1 \\r & 1 & 1 & 1 & 1 \\r & r & 1 & 1 & 1 \\r & r & r & 1 & 1 \\r & r & r & r & 1\end{array}\right)\end{split}\]

    Make a conjecture about the determinant of an arbitrary matrix in this sequence. Can you prove it your conjecture?

    sage: # edit here
    

    [Adapted from: K. R. Matthews, Elementary Linear Algebra , Chapter 4, Problem 19]

  6. What is the largest determinant possible for a \(3\times3\) matrix whose entries are \(1, 2, \dots, 9\) (each occurring exactly once, in any order). How many matrices \(M\) achieve this maximum?

    (Hint: You might find the command Permutations useful. The following code will construct all the lists that have the entries \(1, 2, 3, 4\), each appearing exactly once.)

    for P in Permutations(4):
        L = list(P)
        print L
    
    sage: for P in Permutations(4):
    ....:     L = list(P)
    ....:     print L
    [1, 2, 3, 4]
    [1, 2, 4, 3]
    [1, 3, 2, 4]
    [1, 3, 4, 2]
    [1, 4, 2, 3]
    [1, 4, 3, 2]
    [2, 1, 3, 4]
    [2, 1, 4, 3]
    [2, 3, 1, 4]
    [2, 3, 4, 1]
    [2, 4, 1, 3]
    [2, 4, 3, 1]
    [3, 1, 2, 4]
    [3, 1, 4, 2]
    [3, 2, 1, 4]
    [3, 2, 4, 1]
    [3, 4, 1, 2]
    [3, 4, 2, 1]
    [4, 1, 2, 3]
    [4, 1, 3, 2]
    [4, 2, 1, 3]
    [4, 2, 3, 1]
    [4, 3, 1, 2]
    [4, 3, 2, 1]
    
    sage: # edit here
    

Project Euler Problem 11

In the \(20 \times 20\) grid below, four numbers along a diagonal line have been highlighted.

08 02 22 97 38 15 00 40 00 75 04 05 07 78 52 12 50 77 91 08
49 49 99 40 17 81 18 57 60 87 17 40 98 43 69 48 04 56 62 00
81 49 31 73 55 79 14 29 93 71 40 67 53 88 30 03 49 13 36 65
52 70 95 23 04 60 11 42 69 24 68 56 01 32 56 71 37 02 36 91
22 31 16 71 51 67 63 89 41 92 36 54 22 40 40 28 66 33 13 80
24 47 32 60 99 03 45 02 44 75 33 53 78 36 84 20 35 17 12 50
32 98 81 28 64 23 67 10 26 38 40 67 59 54 70 66 18 38 64 70
67 26 20 68 02 62 12 20 95 63 94 39 63 08 40 91 66 49 94 21
24 55 58 05 66 73 99 26 97 17 78 78 96 83 14 88 34 89 63 72
21 36 23 09 75 00 76 44 20 45 35 14 00 61 33 97 34 31 33 95
78 17 53 28 22 75 31 67 15 94 03 80 04 62 16 14 09 53 56 92
16 39 05 42 96 35 31 47 55 58 88 24 00 17 54 24 36 29 85 57
86 56 00 48 35 71 89 07 05 44 44 37 44 60 21 58 51 54 17 58
19 80 81 68 05 94 47 69 28 73 92 13 86 52 17 77 04 89 55 40
04 52 08 83 97 35 99 16 07 97 57 32 16 26 26 79 33 27 98 66
88 36 68 87 57 62 20 72 03 46 33 67 46 55 12 32 63 93 53 69
04 42 16 73 38 25 39 11 24 94 72 18 08 46 29 32 40 62 76 36
20 69 36 41 72 30 23 88 34 62 99 69 82 67 59 85 74 04 36 16
20 73 35 29 78 31 90 01 74 31 49 71 48 86 81 16 23 57 05 54
01 70 54 71 83 51 54 69 16 92 33 48 61 43 52 01 89 19 67 48

The product of these numbers is \(26 \times 63 \times 78 \times 14 = 1788696\).

What is the greatest product of four adjacent numbers in any direction (up, down, left, right, or diagonally) in the \(20 \times 20\) grid?

sage: A = matrix(20, 20, [
....:    8, 2,22,97,38,15, 0,40, 0,75, 4, 5, 7,78,52,12,50,77,91, 8,
....:    49,49,99,40,17,81,18,57,60,87,17,40,98,43,69,48, 4,56,62, 0,
....:    81,49,31,73,55,79,14,29,93,71,40,67,53,88,30, 3,49,13,36,65,
....:    52,70,95,23, 4,60,11,42,69,24,68,56, 1,32,56,71,37, 2,36,91,
....:    22,31,16,71,51,67,63,89,41,92,36,54,22,40,40,28,66,33,13,80,
....:    24,47,32,60,99, 3,45, 2,44,75,33,53,78,36,84,20,35,17,12,50,
....:    32,98,81,28,64,23,67,10,26,38,40,67,59,54,70,66,18,38,64,70,
....:    67,26,20,68, 2,62,12,20,95,63,94,39,63, 8,40,91,66,49,94,21,
....:    24,55,58, 5,66,73,99,26,97,17,78,78,96,83,14,88,34,89,63,72,
....:    21,36,23, 9,75, 0,76,44,20,45,35,14, 0,61,33,97,34,31,33,95,
....:    78,17,53,28,22,75,31,67,15,94, 3,80, 4,62,16,14, 9,53,56,92,
....:    16,39, 5,42,96,35,31,47,55,58,88,24, 0,17,54,24,36,29,85,57,
....:    86,56, 0,48,35,71,89, 7, 5,44,44,37,44,60,21,58,51,54,17,58,
....:    19,80,81,68, 5,94,47,69,28,73,92,13,86,52,17,77, 4,89,55,40,
....:    4,52, 8,83,97,35,99,16, 7,97,57,32,16,26,26,79,33,27,98,66,
....:    88,36,68,87,57,62,20,72, 3,46,33,67,46,55,12,32,63,93,53,69,
....:    4,42,16,73,38,25,39,11,24,94,72,18, 8,46,29,32,40,62,76,36,
....:    20,69,36,41,72,30,23,88,34,62,99,69,82,67,59,85,74, 4,36,16,
....:    20,73,35,29,78,31,90, 1,74,31,49,71,48,86,81,16,23,57, 5,54,
....:    1,70,54,71,83,51,54,69,16,92,33,48,61,43,52, 1,89,19,67,48
....:    ])