This document is one of More SageMath Tutorials. You may edit it on github. $$\def\NN{\mathbb{N}}$$ $$\def\ZZ{\mathbb{Z}}$$ $$\def\QQ{\mathbb{Q}}$$ $$\def\RR{\mathbb{R}}$$ $$\def\CC{\mathbb{C}}$$

# Demonstration: Cython: Python -> CΒΆ

Here is a function that computes $$\sum_{k=0}^N k$$ in pure Python:

sage: def mysum(N):
....:     s = int(0)
....:     for k in range(1,N):
....:         s += k
....:     return s
sage: %time mysum(10^7)


Let us compare this with the Cython version:

sage: %%cython
sage: def mysum_cython(N):
....:     cdef long long s = 0
....:     cdef int k
....:     for k in range(1,N):
....:         s += k
....:     return s

sage: %time mysum_cython(10^7)


A function to count the number of integer partitions with parts in a given set:

sage: def buying(coins, total):
....:   vlist = [ [0] * len(coins) for _ in range(total + 1) ]
....:   for i in range(total + 1):
....:     for j, coin in enumerate(coins):
....:       if j == 0:
....:         if i % coin == 0:
....:           vlist[i][j] = 1
....:       else:
....:         k = 0
....:         while i - k >= 0:
....:           vlist[i][j] += vlist[i - k][j - 1]
....:           k += coin
....:   return vlist[total][len(coins)  - 1]
sage: [buying([1,2,5,10], i) for i in [1..20]]
[1, 2, 2, 3, 4, 5, 6, 7, 8, 11, 12, 15, 16, 19, 22, 25, 28, 31, 34, 40]

sage: [1,3..10]
[1, 3, 5, 7, 9]


Let us see how long it takes to find the number of partitions of 500 into odd parts:

sage: %time buying([1,3..500], 500)
732986521245024
Time: CPU 3.05 s, Wall: 3.05 s


Make two changes:

sage: %%cython
....:   cdef int i, j, k, coin
....:   vlist = [ [0] * len(coins) for _ in range(total + 1) ]
....:   for i in range(total + 1):
....:     for j, coin in enumerate(coins):
....:       if j == 0:
....:         if i % coin == 0:
....:           vlist[i][j] = 1
....:       else:
....:         k = 0
....:         while i - k >= 0:
....:           vlist[i][j] += vlist[i - k][j - 1]
....:           k += coin
....:   return vlist[total][len(coins)  - 1]


Surely two tiny changes in some Python code cannot make it much faster:

sage: %time cybuying([1,3..500], 500)
732986521245024L
Time: CPU 0.08 s, Wall: 0.09 s

sage: 3.05/0.08
38.1250000000000